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Rotational flow through narrow axial channels is considered in connection with a 
proposed technique to sort and separate particles according to sedimentation 
velocities. Nonlinear and linear axisymmetric flow through two channels connected 
by a slot in the vertical wall is studied numerically. A linearized formulation for the 
three-dimensional flow through a circumferentially blocked channel, with arbitrary 
positioning of the inlets and outlets, is examined analytically. Both approaches 
indicate that to have a sharp criteripl for fractionation, the vertical shear layers on 
the channel walls must overlap. Otherwise, Coriolis effects, accompanying a strong 
azimuthal motion, make the sorting less precise. Results of an exploratory 
experiment with a simple two-stage machine demonstrate the feasibility of the basic 
process for simultaneous and continuous separation and fractionation. 

1. Introduction 
The centrifugal spectrometer (Greenspan 1989) is a device to separate and sort 

particles of different mass or size from a mixture in a truly continuous manner by 
means of a cascade through an internal nest of concentric, slotted cylinders, figure 1. 
(The fractionation of viral factors or latex beads are two of many possible 
applications.) 

In a steady, axial, rotating flow of a mixture, various particle species will 
completely settle out of the stream at distinctly different distances along the channel 
length because the sedimentation time of a particle decreases with increasing mass 
or size. Of course, many old and new separation techniques are based on this 
observation. In the spectrometer, however, particles are also diverted to another 
channel at the appropriate position, either directly or by deflecting part of the flow. 
This enables the complete capture of the heaviest or largest particle species in the 
outer channel but only a fraction of any smaller component (assuming that all 
particles are heavier than the ambient fluid). By repeating this cut many times in the 
cylinder nest, in effect producing an internal cascade, the final result in a mixture of 
two particle sizes, for example, will be two purified streams each containing a single 
type. This concept extends easily to the simultaneous separation of several different 
particle groups. 

Some of many designs and variations are shown in figure 1 in order t o  illustrate the 
fundamental principle. The bulk mixture in the geometry of figure l (a)  contains 
rapidly and slowly sedimenting particles with the flow diverted three times in 
traversing the length of the centrifuge. The fluid moving in the different channels is 
collected and exits as two purified streams. If in general all the heavier particles, but 
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FIQURE 1. Two possible realizations of the basic fractionation concept. In (a )  there is fluid 
between channels while in (b) only particles are so directed. 

only a fraction, r say, of the lighter ones, are diverted a t  each stage, then after n cuts 
(30 or less in practice) the relative concentration of lighter to heavier particles in the 
outermost channel will be reduced by the factor rn. In other words, a very high 
degree of purification can be attained. 

Figure 1 ( b )  shows a design variation that utilizes a wash fluid channel so that only 
particles are transferred at each slot, in order to minimize complications arising from 
the outward flow in a rotating container. The apparatus may be completely 
sectioned into compartments by radial caulks in an effort to counteract the 
unwanted effects of the Coriolis force (Greenspan & Ungarish 1985; Amberg & 
Greenspan 1987, Shaflinger, Koppl & Filipczak 1986 ; Dahlkild & Greenspan 1989). 
Alternatively, it could be desirable to have a circumferential motion when the gap 
between cylinders is very small, in which case the complete radial barriers would be 
replaced by small spacers, the shape and positioning of which might also be used to 
alter the fluid flow beneficially. 

The central problem concerns, then, axial flow in the very narrow vertical channels 
of a rotating container between which there is an exchange of particles and/or fluid. 
The approach here is three-fold : a numerical model for axisymmetric but nonlinear 
fluid motion ; a linearized theoretical analysis to cover important non-symmetric 
configurations ; and an exploratory experiment to demonstrate the feasibility of the 
basic concept, as well as to guide analytical formulations. 

The non-dimensional problem for flow through rotating narrow axial channels is 
formulated first and specialized to the different geometries later. 

Generally for the problems under study, the flow takes place in a narrow rotating 
cylindrical annulus centred around the axis of rotation as shown in figure 2. The 
mean radius is R' and an arclength of a possible compartment is R'O. The channel 
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FIGURE 2. Sketch of cylindrical annulus with two narrow channels, and showing 
the coordinate system. 

width is 2d’ and the channel length, i.e. the height of the container, is 2H’. The length 
of the slot connecting the two channels is 2L‘. We use a curvilinear coordinate 
system (x’, s’, z’), centred in the channel where the unit vectors i ,  j and k are in the 
radial, angular and axial directions respectively. The axes are fixed in the container, 
rotating with angular velocity kQ‘. An incompressible Newtonian fluid of density p’ 
and kinematic viscosity v’ is led through the container with specified inlet and outlet 
velocities. The velocity vector is denoted by 

q’ = u’i+v’j+w’k, (1.1) 

where u‘, v’ and w‘ are the velocity components in the respective directions. A typical 
velocity is V’ = &‘/A‘, where Q is the total volumetric throughput and A‘ is the area 
of the horizontal cross-section of one channel. 

Non-dimensional, unprimed, variables are introduced using H ,  P and p’Q’HV’ as 
reference values for length, velocity and pressure, p’, respectively. Since the channel 
is assumed to be narrow in the sense that d’ -% R ,  the governing curvilinear equations 
are well approximated by their Cartesian counterparts. For conservation of volume 
and momentum this yields 

v*q = 0, (1.2) 

(1.3) R0q*Vq+2k x q = -VP+EV2q, 

where P = p-p’S1’2(R’ + ~ ’ ) ~ / ( 2 p ‘ Q ‘ H v ’ )  is the non-dimensional reduced pressure, 
E = v ’ / (Q’P2)  is the Ekman number, and Ro = v‘/(Q’H) is the Rossby number. No- 
slip conditions for the fluid velocity are imposed on all boundaries and the velocity 
component normal to the wall is prescribed at  the inlets and outlets. 
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A sedimenting particle is assumed to undergo a quasi-steady motion in which the 
centrifugal force is balanced by viscous drag. In the limit of a dilute suspension of 
non-interacting spherical particles of radii a; < d‘ and density pb, a Stokesian drag 
67cp’v’ab(q; 7 4 ’ )  and an effective centrifugal force 3cai3(pb -p ’ )  52’2(B’ + z’) i, give the 
non-dimensional particle velocity as 

E P  qp = q + - ( R + z ) i ,  
Ro 

where the non-dimensional numbers 

Pi-P’ p = -  2 s  
9 d/Q” 

€ =  
P’ ’ 

(1.5a, b)  

are referred to as the relative density difference and particle Taylor number 
respectively. As d’ < R‘, the particle settling velocity Us = ( q p - q ) - i ,  varies only 
slightly in the channel and is, for simplicity, assumed to be constant in the 
computations : 

Us = -R. @ 
Ro 

In accordance with the dilute-limit approximation, the fluid velocity q is calculated 
from the single-phase equations formulated above and particles with a given, well- 
defined settling velocity are then traced through the container. Particles that have 
settled gainst the wall are assumed to slip or roll along the wall in the direction of the 
local wall shear stress of the single-phase flow. Gravity, which easily can be 
accounted for in (1.6), is neglected here owing to the rapid rotation of the container 

An important concept is this context is the critical settling velocity, Ucr say, i.e. 
the lowest particle settling velocity for which all particles of a given size are diverted 
to the outer channel. An accurate estimate of this may be obtained from simple 
kinematic arguments. Let Q; be the total volume flux (per unit length in the 
azimuthal direction) at the input end of the inner channel, from which particles are 
diverted. Let (1 - y )  be the fraction of this flow rate that is deflected through the slot 
to the outer channel. Then if the radial particle settling velocity is assumed to be 
Us < Ucr, the volumetric flow of settling particles into the lower part of the dividing 
wall (see figure 2 ) ,  from a suspension with uniform particle volume fraction a, is 
aq(H’-L’) 2 d ’ .  The volumetric flow of particles into the slot is 

(g/  < Q’”). 

(a&;( 1-7) + C Z ~  2L’) 27tR’. 

The total loss of particles from the flow in the inner channel up to the downstream 
edge of the slot (per unit length in the azimuthal direction) is then 

Qb = a(H’+L’) q + c ~ & ; ( l - y ) .  (1.7) 

We now define the critical minimum settling velocity at which particles are 
completely diverted into the outer channel. This is obtained from (1.7) by requiring 
that the total loss of particles from the flow in the inner channel up to the 
downstream edge of the slot equals the total input volumetric flow rate of particles, 
Q, = a&;. Thus 

(1.8a) 
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In non-dimensional form this relation reads 

(1.8b) 

In place of y ,  U,, could be regarded as one of the non-dimensional parameters 
specifying the problem. 

For particles with a smaller settling velocity than the critical one, Ui < VCr, only 
a fraction, r say, of the total input volumetric flow rate of particles is diverted to the 
outer channel. hence, Q;, = raQ; and (1.7) with ( 1 . 8 ~ )  then give 

r = l - y  1-- . ( 3 
2. Axisymmetric flow 

In order to investigate details of the flow through the slot, we have made two- 
dimensional computations using the full NavierStokes equations in a geometry with 
two axial channels connected by a slot in the dividing wall between them. The main 
simplification is the assumption of axial symmetry (all quantities are independent of 
the azimuthal coordinate), which is not quite true in the experiments nor in the 
actual device. However, these computations capture the complicated flow patterns 
around the sharp edges of the slot, which could be unfavourable for separation. 

2.1. Formulation 
The computations were done using a program, devised by G. Amberg & M. Ungarish 
as part of their ongoing research, for solving the NavierStokes equations in a 
rotating frame of reference. This program was modified to include a dividing wall 
separating two axial channels, with a connecting slot in this wall through which 
fluid is diverted from one channel to the other. The formulation of non-dimensional 
equations is as in $ 1 ,  except that here it is also assumed that all quantities are 
independent of the azimuthal coordinate. As discussed in 8 1,  the channel is assumed 
to be narrow in the sense that its width is small compared to the radial distance to 
the axis of rotation. It is then possible to use Cartesian coordinates, as in (1.2) and 
(1.3). 

The basic equations were solved numerically ; the computations are time 
dependent, even though the results reported here are all steady. In order to reach a 
steady state, the computations were run long enough for transients to decay. The 
code uses a finite-difference discretization on a staggered grid. The incompressibility 
condition is satisfied by using a scheme of the pressure correction type, similar to 
that used by van Kan (1986). Both viscous and Coriolis terms are treated implicitly. 
At each time step, a set of linear equations similar to the Poisson equation must be 
solved, and this is done iteratively by the conjugate gradient method. Convective 
terms are treated by explicit upstream differencing, as described by Davis & Moore 
(1982). The resulting stability restriction on time step is the usual Courant number 
inequality, U < Ax/At. The implicit treatment of the Coriolis term removes the 
restriction At < 1 / 0 ,  which would prevail if the Coriolis term was explicit. However, 
it  is often necessary to keep At x l/O, if an accurate time dependence is required. 
The numerical procedure will be described in more detail in a future publication by 
G. Amberg & M. Ungarish. The dividing wall was introduced in the simplest possible 
fashion, letting it occupy a width of two cells in the staggered grid. The 
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implementation of boundary conditions (zero tangential and normal velocity) on the 
dividing wall is then straightforward. 

The geometry used in the computations is shown in figure 2. Inflow and outflow 
may be specified at either of the ends of the channels. To investigate basic properties 
of the flow, the symmetric case where fluid is fed in a t  the bottom of the inner 
channel, and withdrawn at the upper end of the outer channel, was studied. In order 
to imitate the actual device (see figure l ) ,  another case where half the flux is diverted 
was studied. The flow is then introduced a t  the bottom end of the inner channel and 
withdrawn a t  the top of the inner and outer channels, a t  equal rates. Thirdly, a 
different mode of operation was simulated, in which no flux is diverted. Equal flow 
rates are prescribed at the bottom and taken out a t  the top of each channel; the 
velocity profiles prescribed a t  inflow and outflow are parabolic. In all cases 
considered here, the slot was placed symmetrically around the mid-height and the 
channels were of equal thickness. 

In this paper only particles that are heavier than the fluid are considered, in which 
case settling is outward. The case with light particles settling inward, when the inflow 
is a t  the bottom of the outer channel, is completely analogous within the present 
formulation. 

2.2. Results 
To investigate the flow in the vicinity of the slot we have made simulations of a few 
basic cases. First we have looked a t  a symmetric configuration where the entire mass 
flux is diverted from the inner to the outer channel. Runs were made at  different 
Rossby numbers to examine the effect of nonlinearity. Secondly we have made 
simulations that are relevant for the actual separation device, using the same 
parameter values as in the experiments discussed later. These parameters have also 
been varied to show how a change in the operation of the centrifuge modifies the flow. 
Thirdly the paths of sedimenting particles in the flow field were traced to investigate 
separation. Since the device is intended for use a t  low volume fraction we have traced 
single particles, without considering particle interaction effects. 

In the case where all the mass flux is diverted from the inner to the outer channel, 
we used two different values of the Rossby number : first Ro = 8 x corresponding 
to a fairly weak flow. The Ekman number was E = 1.6 x and the width of one 
channel was d = 0.284 (corresponding to d' = 0.284H'). The resulting flow field after 
a steady state is reached is shown in figure 3. Velocity arrows in the (x, 2)-plane are 
shown in figure 3 ( a ) ,  and levels of constant azimuthal velocity v are shown in figure 
3 ( b ) .  There is a clear symmetry between the inflow and outflow sides. The azimuthal 
velocity w is a maximum in the slot gap, as is the radial velocity u. The azimuthal 
velocity is fairly independent of z except near the edges of the slot. This is because 
the channel width has been chosen to be the same order of magnitude as the &-layers 
that would be expected in a wider channel, d = 0.284, which should be compared to 
I& = 0.117. Also note that there are weak currents that penetrate into the dead-end 
sections of the channels. Following the flow from inlet, the velocity profile is 
concentrated towards the dividing wall as the slot is approached. At the slot edge, 
half the flow turns round the edge and continues in the opposite direction on the 
other side of wall. The remaining half of the flow detours into the dead-end part of 
the channel and eventually turns round the opposite slot edge, to continue toward the 
outlet. The flow around the slot edges is quite intense and is concentrated into two 
jets, one at each edge. We have not tried to do a careful estimate of the width (in the 
z-direction) of these jets, but from basic theoretical considerations it seems likely 
that it would be Ei. 
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FIQURE 3. RQURE 4. 

FIQURE 3. Linear flow regime when the entire volume flux is diverted through the slot showing (a) 
velocity arrows in the (z, %)-plane and ( b )  levels of constant azimuthal velocity: w = -6.88+0.625, 
i = 1,2, ..., 10. E = 1 . 6 ~  lo-*, Ro= 8~ 
FIQURE 4. Nonlinear flow regime when the entire volume flux is diverted through the slot showing 
(a) velocity arrows in the (5, %)-plane and ( b )  levels of constant azimuthal velocity: v = 4.68 +0.417i, 
i = 1,2, ..., 11. E = 1.6 x lo-*, Ro = 8 x 

To see the nonlinear effects, we also computed a case corresponding to a larger flow 
rate, corresponding to Ro = 8 x keeping all other parameters the same as in 
figure 3. The most striking feature of the flow field, shown in figure 4, is that the 
symmetry is broken. The maximal azimuthal velocity is now displaced outwards, out 
of the slot gap, by convection of v, clearly showing the importance of nonlinearity. 
The swirl is decreased on the upstream side, and intensified on the downstream side, 
where it also penetrates deeper into the dead-end part of the channel. Also more than 
half the flow now turns round the lower, upstream edge of the slot. Consequently, the 
current penetrating into the upper end of the inner channel, which feeds the flow 
around the other edge, is weaker. The importance of nonlinearity may be estimated 
from the momentum equation (1,4). Given that the lengthscale in the radial direction 
is given by the channel width to be of order &, order of magnitude estimates imply 
that the nonlinear term in the momentum equation is of importance if Ro 2 @. This 
result may also be inferred from the results of Barcilon & Berg (1971). Numbers here 
give R o / E ~  = 0.68 x 1, while for the case shown in figure 3,  R O I E ~  = 6.8 x < 1. 

In order to investigate the actual device, a case similar to the experiment to be 
presented in $4 was simulated, figure 5.  Comparing figure 2, showing the geometry 
in the computation, and figure 1, showing the actual device, the major difference is 
that the closed bottom part of the outer channel is blocked just above the slot in figure 
1, while in the computation, this channel end was instead sealed at  the bottom. This 
channel end appears to be rather passive, and we do not believe that it is misleading 
to use the geometry in figure 2 instead of that in figure 1. The parameter values for 
this case were E = 1 x Ro = 6.42 x lop4. The typical length was equal to the 
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FIGURE 5.  FIGURE 6. FIGURE 7. 

FIQWRE 5.  Simulation of experiment where half the flux is diverted through the slot showing (a) 
velocity arrows in the (5, %)-plane and ( b )  levels of constant aFimutha1 velocity: v = -2.29+0.208i, 
i = 1,2, ..., 9. E = 1 x 
FIQURE 6. Flow regime with separated shear layers when half the flux is diverted through the slot 
showing (a) velocity arrows in the (r,z)-plane and ( b )  levels of constant aziyuthal velocity: 
v = -4.58+0.417i, i = 1,2, ..., 10. E = 1 x lo-', Ro = 6.42 x 

FIQURE 7. Simulation of wash fluid case where no flux is diverted through the slot showing (a) 
velocity arrows in the (2, %)-plane and ( b )  levels of constant azimuthal velocity: v = -0.25+0.045& 
i = 1,2, ..., 10. E = 1 x 

Ro = 6.42 x L = 0.065, d/Er = 1.28. 

L = 0.065, d/Ex = 2.54 

Ro = 6.42 x L = 0.065, d/Er = 1.28. 

channel height in the experiment, while the computational domain was somewhat 
smaller, so that the non-dimensional half-length of the channels is 0.65 in the 
simulations. The non-dimensional width of each channel is d = 0.059, which again 
means that the channel width is the same order of magnitude as a :-power layer 
(E3 = 0.046). The ratio Ro/Ei = 1.4 x lo-' indicates that the flow is fairly linear. 

In  the computation in figure 5 ,  the height of the slot and the channel length from 
inlet (bottom) to the slot was the same as in the experiment. The channel length 
downstream of the slot was greater in the experiment, but since the velocity profile 
becomes fully developed and independent of the axial coordinate this should not be 
important within the computed length. Figure 5 shows computed results after a 
steady state has been attained : velocity arrows in the (x, 2)-plane are shown in figure 
5(a ) ,  and contours of constant azimuthal velocity in figure 5 ( b ) .  The mass flux enters 
at the bottom of the left (inner) channel and is withdrawn at the tops of each of the 
two channels. Here the channel is narrower than in figures 3 and 4; d / E i =  1.28, 
whereas it was 2.43 above. As a consequence, the flow in the channels away from the 
slot is less modified by rotation : the azimuthal velocity is again maximal in the slot, 
bu t  it decays within less than one slot height away from the slot. As soon as the 
azimuthal velocity has vanished, the velocity profiles in each channel are parabolic, 
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just as they would be in a non-rotating frame of reference. The radial transport in 
Ekman layers at the channel ends that would dominate the flow in ordinary linear 
rotating flow is here suppressed by the close spacing of the vertical walls. The 
velocity profiles away from the slot area are also independent of the axial variable, 
and the flow around the slot will be unaffected by conditions at  the outflow. It is still 
important to keep the length from the inlet to the slot correct, since we wish to 
predict trajectories of settling particles that enter at  the inlet. The flow around the 
slot shows many similarities with the case in figure 3. The flow is apparently linear, 
with the maximum azimuthal velocity centred in the slot. The radial flow is 
concentrated around the slot edges. There is a current that penetrates into the dead- 
end lower part of the outer channel, but here it reaches less than one slot height below 
the slot. 

One other case was tried to see how modifications of the channel width affects the 
flow. The same parameter values as in figure 5 were used, except that the non- 
dimensional channel with d was increased to 0.118, making d/Ei = 2.54. Figure 6 
shows velocity arrows in the (x, 2)-plane and levels of azimuthal velocity. Comparing 
to figure 5 ,  the most apparent difference is that the region of non-zero azimuthal 
velocity around the slot now extends further away from the slot, as far as the channel 
ends. The modifications of the flow pattern in the (x,z)-plane also extends further 
from the slot. In  particular, looking at the left (inner) downstream edge of the slot, 
there is evidence of a flow reversal along the wall, just above the slot. The axial 
velocity is actually directed downwards, against the overall flow direction, in a region 
extending from the slot to a stagnation point located at about z = 0.308 ( z  = 0 a t  the 
centre of the slot and 0.65 at the top). This is because the radial jet around the edge 
will be quite intense (no doubt some sort of singularity in a linear asymptotic theory 
for small Ekman numbers) and close to the edge this ‘singularity’ may then 
dominate the basic flow. This flow reversal may be quite harmful for the operation 
of the device. 

One way of removing the harmful flow around the slot edges would be to allow the 
fluid to pass by the slot, without any net volumetric flow rate through the slot. Fluid 
is then introduced and withdrawn at equal rates a t  the bottom and top of each 
channel. A computation was done with the same geometry and parameter values as 
in the case presented in figure 5,  but with the inflow distributed equally between the 
two channels. The velocity field is shown in figure 7. The axial velocity shows 
Poiseuille profiles which do not completely merge at  the slot. The azimuthal velocity 
shows four lobes around the slot edges. These are much weaker than in the case in 
figure 5 ;  the azimuthal velocity in figure 7 ( b )  is approximately 10% of that in figure 
5 ( b ) .  More importantly, there is no trace of a flow reversal in the axial flow past the 
slot. 

In order to investigate sorting by settling velocity, we have traced trajectories of 
single settling particles, to see whether they are caught in the outer channel. Particles 
have been traced from different positions along the inlet through the device. Figure 
8 (a)  shows paths of particles entering at the lower inner inlet for the case presented 
in figure 5,  fairly narrow channels with a net flow through the slot. The particles have 
a critical settling size according to (1.8), which gives a value of Us = 0.041 19 here. 
The last particle entering at the innermost location at the lower end of the inner 
channel hits the downstream edge of the slot exactly. In the case presented in figure 
5 there is flow reversal above the slot, quite close to the edge. The dashed line shows 
a trajectory corresponding to a settling velocity of Us = 0.0398,3.5% lower than the 
theoretical. This particle settles on the dividing wall above the slot, at  a location 
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FIQIJRE 8. Calculated paths of sedimenting particles entering at  the inlet. (u, b )  The cases 
shown in figures 5 and 6 respectively. Full lines denote particles with (a) U, =0.0412, (b )  
Us = 0.0824, the minimum settling velocity for which all particles pass through the slot according 
to the theoretical estimate. The dashed line denotes particles with (a) Us = 0.0398, ( b )  Us = 0.0613, 
the true minimum settling velocity, taking into account the flow reversal above the slot. (c) The 
waah fluid case in figure 7 ; U, = 0.0412 according to the theoretical estimate. (d) The same case as 
in figure 5;  Us = 0.0206, half the critical settling velocity according to the theoretical estimate. 

where the wall shear changes sign from downwards below, to upwards above. This 
then represents the limiting settling velocity ; particles settling more slowly will settle 
above the stagnation point where the flow velocity will drag them upwards, particles 
settling faster will settle below the stagnation point where the flow velocity will drag 
them down into the slot and the outer channel. Since the flow reversal is weak, the 
critical settling velocity differs only slightly from that given by (1.8). 

Figure 8 (b )  shows particle paths for the flow in the wider channel, which display a 
significant region of flow reversal above the slot. The idea for the sorting is that 
particles settling fast enough, so that they have traversed the channel width by the 
time they reach the upper edge of the slot, will appear in the outer channel only. The 
formula for the settling velocity required for a particle to be captured, (1.8), derived 
in the introduction, is based on kinematic considerations only and does not depend 
strongly on the peculiarities of the flow field. This formula is true under the 
assumption that particles settling into the dividing wall above the slot (downstream) 
will be dragged upwards, away from the slot. When a flow reversal appears, the shear 
stress on the wall will instead be directed down towards the slot in the region from 
the upper edge of the slot to the stagnation point above. The upper end of the length 
available for settling of particles that are diverted to the outer channel is thus 
extended from the upper slot edge to the stagnation point above. Smaller particles 
than expected may then be entrained into the outer channel. This phenomenon 
makes the selection of particles less precise, and should be avoided. 
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The full lines in figure 8 ( b )  correspond to particles with a settling velocity 
computed from (1.8) which gives 0.082 38 for this case ; these are all diverted into the 
outer channel. The trajectory of the particle coming from the lower inner corner 
makes an excursion above the slot in the inner channel, before it settles on the 
dividing wall just above the slot edge. The shear stress on the wall will drag this 
particle down into the slot. The dashed line shows the trajectory for a particle with 
a settling velocity of 0.0613. In figure 6, the location of the stagnation point on the 
inner side of the sidewall above the slot may be estimated to be at  a position 
z = 0.308, i.e. at a distance of 0.24 above the slot edge. The settling velocity 0.0613 
has been obtained from the kinematic argument in the introduction, replacing the 
length over which particles that are diverted settle, H + L', by H'+ L' + 0.24H', the 
distance from the inlet to the upper slot edge plus the length of the flow reversal 
region on the upper sidewall. This trajectory is seen to hit the sidewall precisely at 
the stagnation point. All particles with greater settling velocities will hit the dividing 
wall below the stagnation point, where the viscous stresses will drag them downwards 
and into the slot. Thus the limit on settling velocity for particles that are diverted 
into the outer channel has decreased by 25% from that given by (1.8). 

In figure 8 (c )  particle trajectories for the case in figure 7 with no net flow through 
the slot are shown. The particle settling velocity is chosen to be the critical one 
according to (1.8). The trajectory of the innermost particle is seen to hit the upper 
slot edge head on. In  this case there is no trace of a flow reversal, because of the 
absence of a net volume flux through the slot and the sorting is expected to be very 
precise. The wash fluid mode of operation thus removes this complication, and should 
be beneficial for separation. The throughput rate for a given critical particle settling 
velocity is however lower for the wash fluid mode than for a case with diversion of 
flow to the outer channel. 

Figure 8 (d )  shows trajectories for particles with half the critical settling velocity, 
i.e. the lighter or smaller species that is to be removed from the stream passing 
through the slot. They are drawn for the case in figure 5, with a narrow channel width 
and half the flow rate passing through the slot. The particle entering at  the centre of 
the inner bottom end is seen to pass through the slot. Equation (1.9) shows that f of 
the smaller particles are removed from the stream passing through the slot. Since this 
cut is to be repeated many times this is however quite sufficient. For example, the 
number of small particles in the stream is reduced by a factor 0.75 at each cut, giving 
only 0.751° = 5.6% of the small particles left after ten cuts. 

As noted above, the importance of the Coriolis force increases with increasing 
channel width and the flow in figure 6 shows more of the characteristics of a rotating 
flow than that in figure 5.  In industrial centrifuges it is important to counteract the 
effects of the Coriolis force, in order to obtain good separative performance. That is 
often done by using radial channels that are narrow in the sense that their thickness 
is the order of the Ekman-layer thickness. Here, with axial channels, the relevant 
channel width is instead the thinnest of the vertical boundary layers, Id. The particle 
trajectories in figure 8 ( b ) ,  as discussed above, show that indeed it is important to 
subdue the Coriolis force for successful operation of this device also. 

3. Three-dimensional flow 
We now drop the assumption of axial symmetry in order to investigate possible 

changes in the performance of a circumferentially blocked apparatus (see figure 2). 
The linearized formulation also allows arbitrary positioning of the inlets and outlets, 
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but the meridional barriers are assumed to be impenetrable. Only a single channel 
without internal boundaries is considered, for which a rather straightforward 
analytical approach is possible in the linear regime. This means that a t  best an 
imitation of the flow in the spectroscope can only be achieved from this model by 
introducing an outlet in the form of a horizontal slot in the outer vertical wall where 
velocities are prescribed. The complete flow through a slot is a far more difficult 
problem. 

3.1. Formulation 
We study here the flow due to a source-sink distribution on the boundary of a 
channel with meridional barriers positioned at s = +RO. An asymptotic solution is 
sought to the boundary-value problem (1.2), (1.3) as formulated in $ 1  for E 4 1, 
Ro 4 1 .  The channel width is assumed to  be of order H E :  so that 

a = d’ / (HEf)  (3.1) 

6 = z/ES. (3.2) 

is an order-one quantity, A new, stretched coordinate is therefore introduced : 

The non-dimensional domain for the flow is then 

The boundary conditions on the barriers and on the other vertical walls are 

q ( s  = fRO) = 0, 

u(6 = f a )  = E W * ( s , z ) ,  

(3.4) 

( 3 . 5 ~ )  

v(6 = f a )  = w(6 = +a)  = 0 (3.5 b,  c) 

by which global conservation of volume yields 

r:e ds JI, [U+(s, 4 - U-(s, 4 1  dz+ L [W+(E, 8) - K ( 5 ,  4 1  dE = 0, (3.6) 

where W, are the specified normal velocity components a t  the horizontal top and 
bottom boundaries. The weak radial velocity a t  $ = +a, which has been introduced 
to allow simulation of a flow partly deflected radially through a slot in the vertical 
wall is thus taken to be of the same order of magnitude, - Ei, as the net vertical 
transport over the horizontal boundaries. It turns out that  this also validates the 
scaling of v and w. 

For small Ekman numbers large forces due to  horizontal shear are restricted to thin 
Ekman layers close to the non-vertical walls, and the problem is simplified by using 
the equivalent linear Ekman-layer compatibility conditions a t  the horizontal 
endwalls for the interior flow (Greenspan 1968, p. 92). In  terms of the stretched 
variable 6 they are 

(3.7a, b )  

For the interior flow then, no-slip conditions at these walls are dropped together with 
terms of vertical diffusion in the momentum equations. The Rossby number is 
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assumed small enough to allow a linear analysis (see 53.2) and the governing 
equations then reduce to 

where P = PIE4 is the rescaled pressure, qh = q-kw is the horizontally projected 
velocity vector and 

(3.10) 

The boundary-value problem is conveniently formulated in terms of the pressure, P,  
for which it is well known (Greenspan 1968, p. 29) that a single equation can be 
derived. It follows from (3.8) and (3.9) that 

(3.11) 

Since E ,  by assumption, is small we shall neglect the last term in (3.11). The velocity 
components are given by 

where only the leading-order terms in the Ekman number are kept. In terms of the 
pressure, the boundary conditions (3.4) and (3.5) with (3.12) give 

iaP 1 a 
2 as 4a.5 

+--VEP = U,(s, z )  a t  6 = fa, ( 3 . 1 3 ~ )  

(3.13b, c) 
aP 
- - V ; P = O  at [ = f a ,  
a.5 

and (3.7) with (3.9b) and (3.12a, b )  yield, to leading orders, 

(3.14 a-c) 

(3.15) 

which completes the formulation of the boundary-value problem for P. 

3.2. Analysis 
Meridional boundary layers of thickness O(E$ are expected adjacent to the barriers 
at s = +R@.  It follows from (3.11) and (3.12) that outside these boundary layers 
u - Ei whereas v ,  w, and P are all O(1). Inside the boundary layers, where 
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s = f RO + O(Ei), we have u - v - w - P - 1.  The horizontal force balance is here 
approximately geostrophic so that the pressure in each horizontal cut acts as a 
stream function for u and v to lowest order. An order of magnitude analysis shows 
that a linear analysis in these layers is justified if Ro 4 &. For Ro - Es the main 
horizontal force balance is still geostrophic but convection and diffusion of vorticity 
are nevertheless of comparable magnitudes. In the interior, where the appropriate 
lengthscale in the flow direction is much larger, the constraint on the Rossby number 
is relaxed to Ro 4 Ei, see Barcilon & Berg (1971), according to which a linear 
analysis for axisymmetric flow is justified if V'lSZ'd' 4 1. In terms of Ro and E this is 
equivalent to ROE-; 4 1, which also holds in the non-axisymmetric case studied here. 

Here only the interior flow outside the barrier boundary layers is considered. The 
equation for P is thus approximated with the standard Stewartson Ei-layer equation 

and (3.12a, c) are simplified to 

(3.16) 

(3.17 a, b) 

Since for the interior flow u - Ei we define 

ti = u/Ei,  (3.18) 

whereas for v (3.126) still holds. Of the boundary conditions at 6 = +a, (3.13a, c) are 
approximated by 

iaP 1a3P a 4  P --+-- = U*(s,z) ,  2 as 4 a 6 3  
(3.19a, b) 

At the radial barriers, the interior solution cannot satisfy either the no-slip or the 
non-penetrating conditions, which have to be replaced by integral constraints. Since 
the flow is completely blocked by the barriers and since the boundary layers adjacent 
to the barriers can support at  the most a vertical volume flux of order Ei as w - 1, 
the net interior flow in the azimuthal direction, which is O(EB), must be zero at  every 
vertical position of the barrier. This yields 

l a v ( S ,  fRO,z)d[ = g[P(a, +RO,z)-P(-a,  fRO,z)] = 0, (3.20) 

for all values of z, and this replaces (3.14) for the interior flow. For the conditions at 
the horizontal boundaries, all derivatives with respect to s are dropped accordingly 
and for simplicity we also neglect the Ekman-layer suction which is of order @ 4 1. 
We then have 

a2  w ?! z = + 1 )  =-(E,s), 
a% ( - aE2 

(3.21 a, b )  

w(z = f 1 )  = W*(& s) (3.22a, b) 

for the interior flow at the top and bottom walls. Formally, then, to obtain a, v, and 
w we first solve forpfrom (3.16) with (3.13b), (3.19), (3.20) and (3.21). The horizontal 
velocity components then follow directly from (3.12b) and (3.17a), whereas w is 
integrated from (3.17b) with either of (3.22a, b).  
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The solution of the problem is obtained as a superposition of two parts, each 
consisting of very complex series of eigenfunctions. An outline of the procedure is 
presented in the Appendix and more details will appear elsewhere. 

3.3. Discussion 
We precede the discussion of the results with some fundamental information about 
vertical boundary layers in rotating flow. Usually for flow in a rotating container at 
small Ekman numbers, E -4 1, the transition region between the interior inviscid flow 
and the vertical wall can asymptotically be divided into two viscous boundary 
layers, one inside the other. The thinner O(E$ layer is adjacent to the wall and 
embedded in the thicker O(Ei) layer. The main physical difference between the two 
is that in the Ei layer viscous forces are weaker so that the restoring effect of the 
Coriolis force on columnar fluid elements is large enough to prevent any vertical 
variation of the horizontal velocity components, whereas a weak linear variation of 
w is still possible. To fulfil the complete viscous boundary conditions, a much larger 
deformation of fluid elements is required, and this is provided by the more viscous 
Ei layer, which also redistributes flow from the horizontal Ekman boundary layers 
to the interior. (For details see e.g. Barcilon 1967 and Greenspan 1968, p. 97.) In  our 
case the channel is assumed narrow enough for the O ( d )  layers a t  the walls to overlap 
and no O(Ei) layer is present. However, as the non-dimensional channel width, 2a, 
is increased the O(Ei) layers adjacent to the walls tend to be separated by a quasi- 
Ei layer in the centre of the channel, in which the horizontal velocity components are 
almost independent of the vertical coordinate. 

Numerical summation of the series solution has been performed for two particular 
flow cases. The source-sink distribution is in both cases independent of the azimuthal 
coordinate. This means that the modification of the flow, compared to its 
axisymmetric counterpart, is only due to the insertion of radial barriers. In the first 
case the source-sink distribution on the vertical walls, U, , is zero and the velocities 
at the horizontal walls are such as to necessitate a radial transport of fluid in the 
region between the inlets and outlets. In the second case, part, or all of the fluid 
which is injected at the lower horizontal wall is ejected over a narrow band running 
along the outer vertical wall. In  some, but not all, regards this case is believed similar 
to the flow in one of the chambers of the actual device. Apart from the fact that the 
no-slip conditions at the slot do not hold in the actual device, the most doubtful 
feature of the calculation is probably that the distribution of the radial velocity over 
the slot - especially in the azimuthal distribution - need not be uniform as assumed. 
In particular there might also be a significant radial flow through the real slot in the 
boundary layers at the meridional barriers. To this end, then, we have to be content 
with geometric and qualitative similarity to the complete flow. The second case is 
complemented with a study of the trajectories of sedimenting particles. 

The flow field has been visualized in several ways: projections of the velocity 
vectors at selected points (figure 9), contour lines of the velocity components in some 
planes parallel to the coordinate surfaces (figures 11, 12, 14) and streamlines (figures 
10, 13). In  all graphs the width of the channel is exaggerated and the cylindrical 
geometry is not shown. 

It is worth mentioning first that when the inlet and outlet conditions are 
independent of the azimuthal coordinate, as for the cases presented here, it follows 
from the analysis (see the Appendix) that the radial velocity outside the barrier 
layers is also independent of s, not withstanding that the flow is fully three- 
dimensional. 
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FIQURE 9. Projection of the velocity vector (ti, w, w) at selected points in an azimuthally blocked 
channel without a slot for (a)  a = 1, ( b )  a = 3; R8 = 1 .  

A sample of results for the first case are presented in figures 9 and 10 for different 
values of a = d/Ef. The fluid is injected along the innermost quarter of the lower wall 
with a parabolic velocity profile and ejected similarly along the outermost quarter of 
the upper wall. In a very narrow channel, a < 0.5, theory and computation show that 
the flow almost immediately adjusts to a vertical Poiseuille-like flow. As is the case 
in axisymetric channels (Barcilon & Berg 1971), radial transport appears within the 
very short distance of about H ~ U ~ / ( A ~ ) ~  - (d’)352’/(4v’), close to the inlets and 
outlets. Away from these regions the radial and azimuthal velocity components are 
close to zero. The barriers thus have a minor effect on the flow. 

For larger values of a, e.g. a = 1 in figures 9 (a)  and 10 (a),  when the channel width 
is of the order of the vertical Ei layers, radial transport occurs in extended regions 
around the horizontal walls. Owing to the action of the Coriolis force, the fluid here 
flows in the direction opposite to the rotation, towards the forward-facing meridional 
barrier. Fluid approaching the barrier is partly forced upwards by the pressure 
gradient. I n  the middle of the channel the radial transport is not so pronounced. The 
azimuthal pressure gradient, supported by the meridional barriers, here forces fluid 
towards the backward-facing barrier, the azimuthal Coriolis acceleration now being 
of less importance. Some of the fluid meeting the barriers is turned in the opposite, 
azimuthal, flow direction by the boundary layers. Close to the inlets and outlets the 
radial transport in these layers is outwards, whereas in the middle region the 
transport is inwards. 

If the channel is wide enough, e.g. a = 3 in figures 9 ( b )  and lO(b) ,  the O(E’) J vertical 
shear layers tend to  be separated from each other. Through the action of these layers, 
the radial transport between them is almost uniformly distributed along the channel. 
Vertical flow is more or less restricted to the near-wall regions which supply/ 
withdraw fluid radially to/from the central region between the walls. I n  the 
central region the accentuated Coriolis force due to the radial transport induces an 
azimuthal motion towards the forward-facing barrier. Fluid meeting the barrier is 
turned in the opposite flow direction into one of the near-wall shear layers. The 
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FIQURE 10. Streamlines originating at different azimuthal positions of the inlet in an azimuthally 
blocked channel without a slot for (a) a = 1, ( b )  a = 3; R8 = 1. The view direction is from behind 
the forward-facing barrier behind the inner vertical wall (left) and from behind the forward-facing 
barrier (right). 

streamlines in figure 10 (b )  show that fluid interacting with the barrier layers follows 
very complicated paths through the channel. 

Even if radial transport locally is present at  each vertical position in the boundary 
layers at  the barriers, there is in this case no vertically averaged net transport in 
either of these layers. 

The second case is presented in figures 11-13. The flow is here injected over the 
entire lower wall in the form of a Poiseuille flow and ejected uniformly over a band 

6 = a, 121 < L,  Is( < RO 
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FIQURE 11.  Flow in an azimuthally blocked channel when all the fluid is ejected through the slot 
for a = 1, R8 = 1 ,  L = 0.2, showing levels of constant (a) ti in a meridional cut: 

TZ=0.45f(i-l) 0.454, i =  1,2 ,..., 10; 

(b)vinfourmeridionalcutsats=-1.0, -0.4,0.3, 1.0: v=-l .O+(i-l)O.2O,i= 1,2 ,..., lO(the 
arrows indicate the azimuthal flow direction) ; (c) win the same meridional cuts: w = -0.44+ ( i -  1) 
0.264, i = 1,2, ..., 10. 

at the outer wall. In this case we keep the total flux constant for the different widths 
of the channel. 

For very narrow channels radial transport occurs only in a region localized across 
the channel, level with the radial outlet. The azimuthal deflection of streamlines is 
small. 

In wider channels, e.g. a = 1 in figures 11 and 13 (a ) ,  the region of radial transport 
is extended. As discussed in the first case, fluid in regions with a pronounced radial 
transport is forced towards the forward-facing barrier whereas in other regions the 
fluid tends to flow in the opposite, azimuthal, direction. At  he backward-facing 
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FIQURE 12. Flow in an azimuthally blocked channel when all the fluid is ejected through the slot 
for a = 3, R8 = 1, L = 0.2, showing levels of constant (a) ti in a meridional cut: 

U = 0.45+(i-l) 0.454, i = 1,2 ,..., 10; 

(b) win four meridional cuts at 8 = - 1.0, -0.4,0.3,1.0: w = - 1.31 + ( i -  1) 0.291, i = 1,2, ..., 10 (the 
arrows indicate the azimuthal flow direction ; (c) w in the same meridional cuts : w = - 0.82 + (i - 1) 
0.182. 

barrier, turn around of fluid through the boundary layer takes place whereas this 
effect is not so strong at  the forward-facing barrier. 

For cases with separated I$ layers and a uniformly distributed radial transport in 
the middle between the vertical walls, as is the tendency for a = 3 in figures 12 and 
13(b), azimuthal motion is dominated by a circulating flow in horizontal planes. The 
strongest radial motion, appearing next to the wall with the outlet (figure 12a), 
induces flow towards the forward-facing barrier which extends along the whole 
channel height (figure 12b). The fluid is turned by the barrier layer and flows back 
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FIGURE 13. Streamlines in an azimuthally blocked channel when all the fluid is ejected through the 
slot for (a) a = 1, originating at different positions over the inlet; ( b )  a = 3, originating along a 
meridional line at s = 0 and an azimuthal line at 5 = 0 (right) ; R8 = 1, L = 0.2. 

towards the backward-facing barrier along the opposite wall. The boundary-layer 
flow at the barriers is thus in opposite directions : outwards at the backward-facing 
and inwards at  the forward-facing barrier. However, the global net radial barrier flow 
is zero for this case too. 

The range of validity in a = d / E i  of the asymptotic analysis depends in each 
specific case on the Ekman number E. The Ekman-layer suction, which was 
neglected in the approximate boundary condition (3.21), is of order a2& for large 
values of a. If one takes a -+ E-h, which is equivalent to a channel width d - HE:, 
Ekman-layer suction is of the same order of magnitude as the injection velocity. Part 
of the radial transport would then take place via the Ekman layers. Inclusion of 
Ekman-layer suction in the analysis would give a solution uniformly valid for 
channel widths up to - H’E’;. It has also been assumed that the Ekman layers are 
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FIQURE 14. Flow in an azimuthally blocked channel when only half the flux is ejected through the 
slotshowinglevelsofconstantverticalvelocityfor ( a ) a =  1 , w  = 0.17+(i-l)O.l69,i = 1,2, ..., 10; 
( b ) a = 3 ,  ~ = - 0 . 2 8 + ( i - l ) O . O 8 7 3 , i = 1 , 2  ,..., l O ; R @ = l , L = 0 . 2 .  

thin compared to any lengthscales of the flow field. For small values of a this requires 
Q a3. Therefore the range of validity in a, 

4 a .g E-&, 

can be rather narrow in applications where Eh is not truly small. 
Finally we investigate the ability of the device to sort particles by settling in 

analogy with the axisymmetric case studied in $2. In order to do that we add a 
vertical Poiseuille flow to the flow field of case two in the previous paragraphs, and 
thus obtain a flow where only part of the injected fluid is diverted out through the 
slot in the vertical wall. We trace particles from different positions over the inlet and 
in channels of two different widths corresponding to a = 1 and a = 3 respectively. 
The settling velocity of the particles is chosen at  the value given by (1.8) which, 
according to the kinematic theory, is the lowest settling velocity for which all 
injected particles pass through the slot for a given flow rate. In scaled, non- 
dimensional form (1.8) yields 

(3.23) 

where @ = Q/Ef is the scaled flux per unit length into the channel at the lower 
horizontal wall and y is the fraction not led through the slot. 

Contour lines of the vertical velocity component for the case a = 1 are shown in 
figure 14(a). Half of the injected fluid is here diverted out through the slot. One can 
only just see very small regions of reversed flow on the downstream side of the slot in 
this case. Particle paths originating at the inner vertical wall are shown t o  the left 
in figure 15 (a) .  All particles shown settle only slightly above the far edge of the slot. 
Particles released along the centre of the inlet, as shown to the right in figure 15 (a) ,  
escape as expected through the slot. There are thus no dramatic discrepancies with 
the kinematic theory, which predicts all particles with settling velocity according to 
(3.23) to pass through the slot. 

Figure 14(b) shows the contour lines of the vertical velocity in the wider channel. 
Here the vertical throughflow cannot prevent a flow reversal on the downstream side 



242 A .  A .  Dahlkild, G .  Amberg and H .  P. Greenspan 

FIQURE 15. Paths of sedimenting particles with critical settling velocity, 0, = 516, released along 
the inner vertical wall of the inlet (left) and along the centre of the inlet (right) for the flow cams 
shown in figure 14: (a) a = 1, ( b )  a = 3;  R8 = 1, L = 0.2. 

of the slot. Particles released at  the inner vertical wall of the inlet, as shown to the 
left in figure 15 ( b )  , are initially caught by the main upward flow and also follow the 
azimuthal stream towards the backward-facing barrier. Reaching the outer part of 
the channel and after a detour in the upper part, the particles follow the opposite 
azimuthal stream and are finally directed towards the slot in the region with vertical 
flow reversal. Most of the particles settle a small distance above the slot edge. Some 
particles, though, are dragged with the azimuthal stream into the barrier boundary 
layer and experience a sudden and very rapid radial transport as they are ejected 
again almost instantaneously at  another more outward position. These particles 
manage to escape through the slot and may even settle on the upstream side of it. 
Particles released along the centre of the inlet are shown to the right in figure 15 ( b ) .  
These particles are caught by the azimuthal stream in the outer part of the channel, 
directed towards the forward-facing barrier. To a large extent they do escape through 
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the slot but some of them are captured by the azimuthal flow into the barrier 
boundary layer. Here, at  the forward-facing barrier, the radial transport is inwards 
and particles are ejected again from the barrier layer at  a more inward position. 
Then, following the azimuthal stream away from the forward-facing barrier and the 
upward main stream, these particles sediment outwards again but are never even 
close to passing through the slot. Instead, as can be seen in figure 15(b), the particles 
are again captured by the azimuthal stream into the forward-facing barrier where 
they experience an additional inward transport. The behaviour is then repeated until 
the particles are finally carried out through the top outlet. 

It should be mentioned that the wash fluid case, discussed in the introduction and 
treated in $2.2 for the axisymmetric configuration, is only naiirely described by the 
three-dimensional model used here. Since no fluid is ejected through the wall in this 
case the inlet Poiseuille profile away from the barrier layers extends unaffected 
through the whole channel. The barriers are thus without consequence and the 
kinematic formula for the critical particle settling velocity will be trivially satisfied. 

We have seen then, from the simulations for the wider channel, that the particles 
do not behave at  all as expected from the kinematic theory. Firstly, owing to the 
outward radial flow at the backward-facing barrier, particles with significantly 
smaller settling velocity than that given by (3.42) can escape through the slot. 
Secondly, the inward radial flow at the forward-facing barrier prevents some 
particles from escaping through the slot that were predicted to do so according to the 
kinematic theory. Therefore, unless the channel is narrow enough, an azimuthally 
blocked device drastically decreased the ability to sort particles of different settling 
velocities. One should bear in mind though that these conclusions rest on the 
assumptions of a simplified model of the three-dimensional flow through a slot as 
previously discussed in the beginning of this section. 

4. Experiment 
An important objective is the development of an ultra centrifuge that can separate 

and fractionate the smallest biological factors - proteins, viruses, antibodies, 
vaccines etc. - in a truly continuous manner that does not involve stopping the 
machine as an intrinsic part of the process. A centrifuge to size and sort very much 
larger particles would also have many technological applications. As the first step to 
this end, an exploratory experiment was undertaken in order to demonstrate the 
feasibility of the centrifugal spectrometer and to assess and to verify theoretical 
models, conclusions and predictions. 

A low-speed, two-stage centrifuge, figure 16, was constructed to fractionate, in the 
manner described earlier, a mixture of two sizes of polystyrene particles with 
diameters of about 190 and 380 pm respectively. The fluid consisted of water and a 
water-miscible oil, Ucon 5100HB which enables the relative density difference 
between solid and fluid, 8, to be set fairly precisely in the interval 0.002 < E < 0.005. 
The physical scales, table 1,  were chosen to give dimensionless parameters for a 
simulation with a low-velocity machine where the vertical shear layers were each 
approximately the channel width in thickness. The flow rate was controlled by 
setting the exit valves, the flux and/or the rotation rate. In most of the early runs, 
the machine was placed in a somewhat conservative mode of operation, with the flow 
set at 75% of the maximum theoretical value, since a proof of feasibility was the 
main objective. No attempt to date has been made to determine optimal running 
conditions. 
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FIQURE 16. A schematic of the centrifuge and (photograph) the early experimental set-up with 

collection assembly in place. 

In practice, the assumption that particles slip or roll along a vertical wall is 
sometimes difficult to achieve, especially with polymethymethacrylate (PMMA) 
particles in glycerine and water. Of course, it would have been preferable a t  the 
outset to have slanted channels, in order to permit the centrifugal force to move the 
sediment directly, but the cost of fabrication proved excessive. As an alternative, 
and as a simulation of the more desirable configuration, the apparatus was operated 
upside-down, so to speak, which allowed the small gravitational force (measured by 
the Froude number) to assist in moving particles a t  the wall. The difficulties were 
essentially eliminated this way ; gravity could also be easily added to the numerical 
model. 

In  these experiments, a measured quantity of large, roughly screened particles 
(350-425 pm) were slowly introduced into the flow by a gravity feed and the output 
from each channel was carefully collected and weighed. At the prevailing conditions, 
all these particles should have passed through the slot into the outer channel but size 
or density dispersity alone, among several other sources of error, made this 
impossible to achieve. However, it did prove relatively easy to  separate and collect 
95% or better of the dispersed phase, i.e. a loss of 50 or less particles per thousand 
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Ucon oil/H20 
MI60 

8.7313 

6.826 

0.0030 
0.0075 
0.0175 
0.38 
0.0702 
2.375 x 
0.0975 
0.5749 
0.635 
0.05 

351.0213 
64.4733 
0.2044 
7.1205 
0.0094 
0.03416 

20 

40 

Description 

radius (cm) 
height (cm) 
stage length (cm) 
rotation rate (s-l) 
relative density difference 
small particle radius (cm) 
large particle radius (cm) 
kinematic viscosity (cm'/s) 
Froude number 
Ekman number 
Ekman boundary-layer thickness (cm) 
vertical shear-layer thickness (cm) 
plate separation distance (cm) 
flow cut 
settling time, small particle (8 )  

settling time, large particle (s) 
max channel velocity (cm/s) 
flow rate (cma/s) 
particle Reynolds number 
channel Reynolds number 

TABLE 1. Design parameters 

to the inner channel. On occasion the machine ran almost perfectly; figure 17 is a 
photo of efflux from each channel in one such case. 

The major experimental problem is the oil/water composition which is not a true 
mixture but is more accurately described as a weak association. It seems very easy 
to break the mixture, the oil degrades the polystyrene beads and the somewhat 
unstable bonding between water, oil and plastic produces interesting but unexplained 
effects which, perhaps, contribute to a puzzling inconsistency. It is, however, easy to 
control the density difference and yet keep the viscosity at an acceptably high value, 
requirements otherwise difficult to achieve with polystyrene. Another severe problem 
is getting test particles that have the same settling velocity. The spectrometer when 
operational will automatically solve this difficulty but, for the present, particles are 
carefully sifted to narrow the size range and then floated or sunk in solutions of 
known densities to eliminate deviations. 

In  the next and ongoing round of experiments, a number of modifications have 
been made to remedy the aforementioned difficulties. Greater care has been exercised 
to select test particles more uniform in size and density. PMMA spheres are now used 
because the larger density of this plastic, 1.18 g/cm3, can be matched with that of the 
preferable mixtures of water/glycerine or ethylene glycol/glycerine. (But PMMA 
particles, individually and as a sediment, are much more difficult to work with than 
those of polystyrene.) Less important changes concern the control of the flow, new 
valves, etc., but a complete discussion of the ongoing experiment will appear later, 
upon completion. However, one noteworthy result already evident is that, with 
sufficient care, the loss of particles to the inner channel even in this simple device can 
consistently be made less than 1.5%, or 15 particles per thousand; 0.5% is neither 
unusual nor the lowest value attained. 

With all the constraints imposed and with the limited resources available so far, 
the results achieved to date are most encouraging for they demonstrate convincingly 
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FIGURE 17. ( a )  Particle efflux from the inner (left) and outer (right) channels, left and right 
respectively. ( b )  Particles collected from each channel. 

the practicality of the basic concept and the excellent prospects for developing 
industrial machines. 

5. Conclusions 
Rotating flows through narrow axial channels have been considered with emphasis 

on the application to a device which sorts particles of different sedimentation 
velocities. This investigation mainly concerns a detailed study of the single-phase 
flow pattern. An analysis of the axisymmetric flow in two neighbouring channels 
connected with a slot was done numerically, whereas a linearized model of the three- 
dimensional flow in a circumferentially blocked channel was studied analytically. 
Then, with the flow field established, the loci of single particles, small compared to 
any physical scale of the basic flow and with well-defined settling velocities, were 
traced through the container. 

It was found in both cases that the features of the flow depended strongly on the 
ratio of the channel width to the thickness of the vertical shear layers. If the shear 
layers a t  the axial channel walls overlapped, the flow was only slightly influenced by 
the Coriolis force, whereas if they were separated and distinct a large, unidirectional 
and retrograde flow appeared that extended through the entire channel length. The 
radial motion in the domain was made more uniform as well. In contrast, the 
azimuthal velocity in the non-symmetric configuration was retrograde only in 
regions with a pronounced radial transport. Elsewhere the fluid was forced in the 
same direction as the rotation by the azimuthal pressure gradient supported by the 
circumferentially blocking barriers. 
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The validity of a kinematic result obtained for the minimal settling velocity of 
particles that escapes through a slot in the channel wall was investigated for different 
flow cases. For overlapping shear layers this critical settling velocity was found to be 
in satisfactory agreement with the kinematic formula in both flow cases. In wider 
channels for the axisymmetric motion, a flow reversal on the downstream side of the 
slot dragged particles of significantly smaller sedimentation velocity through the slot 
than established by the kinematic theory. However, an extended kinematic formula 
was found to be valid in which account was taken of the axial extent of the flow 
reversal region. A similar deleterious effect occurs in the three-dimensional case, 
which is further augmented by a rapid outward transport in the boundary layer 
adjacent to the backward-facing meridional barrier. In addition, an inward radial 
transport adjacent to the forward-facing barrier counteracted the settling of 
particles in this neighbourhood so that they, in contradiction to the kinematic 
formula, did not escape through the slot. Thus, the sorting mechanism for wider 
channels was partly destroyed by the flow at the barriers in the three-dimensional 
case whereas in the axisymmetric channel a criterion for the sorting mechanism 
existed in an extended sense dependent on details of the flow field. 

Preliminary experimental results show good separation and fractionation of a 
mixture and, more importantly at  this stage, demonstrate the feasibility of the basic 
concept. 

(a) for good separative performance, flow in the channels should be viscously 
dominated, i.e. the boundary layers must overlap substantially to give as nearly 
a Poiseuille profile as possible ; 
(b )  separation and fractionation are significantly improved using a wash fluid so that 
only particles (and not fluid) need be diverted between channels; 
( c )  the axisymmetric container and channel configuration work better than one that 
is sectioned ; 
(d )  the concept is feasible. 

The main conclusions are these: 

This work was partially supported by the Swedish Board for Technical 
Development, the Sweden-America Foundation and the National Science 
Foundation, Grant number 8519764-DMS. 

Appendix. Analysis of the interior solution away from the barriers 

respectively by the problems 
The solution is obtained as a superposition of two parts, P,  and P,,  defined 

a; P 1 + 4 a p l  = 0 ;  (A 1) 

and 
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Observe that the boundary conditions do not imply til = 0 a t  6 = +a. As a 
consequence an additional source term appears in the boundary conditions, (A 6c, d ) ,  
for a2 at = +a. Series solutions for PI and Pz are obtained by separation of 
variables. It can be shown that they are of the form 

a, 

Pl = Pp+PQ+ %k(E/a) (a,(s)cosh(k,z)+b,(s)sinh(k,z)) 
n-1 

m 

+ X ~~(E/a) (c , ( s )cosh(~ ,z)+dn(s)s inh(~nz)) ,  (A91 
n-i 

with 

with Z m ( z )  = sin ($7~) sin ( h x z )  + cos (+rnrc) cos ( h x z ) ,  

where superscripts s and as denote symmetry and antisymmetry with respect to 6 of 
the functions %, and X,. The eigenfunctions Sn with eigenvalues A, are adjoints to 
those studied by Barcilon & Berg (197 1 )  and the X ,  are straightforward extensions of 
functions appearing in unbounded vertical Ei-layers. The coefficients in (A 9) are 
determined from the boundary conditions (A 4) at the horizontal walls by the use of 
orthogonality relations for 55,. Fm and G, in (A 10) are obtained from a system of 
ordinary differential equations derived from the boundary conditions (A 6c)  a t  the 
vertical walls. Pp, PQ and PR are particular solutions satisfying at least the no-slip 
conditions (3.19) and the integral conditions (3.20) at the radial barriers: 

(A l la,  b )  - z -  
PP = -3w;--, P R  = -2u;s, 

a2 

where 

(A i l c )  

dg ds d[ ds 
2a 2RO ’ 2a 2R8’ 

The corresponding velocity components are 

@ P = O ,  v p = o ,  WP=jW;(l-$), 

aR = u;, VR = 0, W R  = 0,  

(A 12a, b)  

(A 12c) 

(A 13a-c) 

(A 14u-c) 

(A 15a, b )  

(A 15c) 
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P p  thus represent a two-dimensional vertical Poiseuille flow which accounts for a net 
vertical mean flow w",, and PR represent a uniform radial velocity u; which takes 
care of the net radial mean flow across 5 = 0 not accounted for by al. The third 
particular solution is a source-sink flow with uniform radial inflow over the vertical 
walls and an azimuthally independent outflow a t  the top and bottom with parabolic 
velocity profiles. This generates a likewise azimuthally independent azimuthal 
motion, 04, with zero net flux. 

Actually a great deal of the flow pattern shown by the streamlines in figure 13 b can 
be understood by superposition of the particular solutions just mentioned ; as the 
width of the channel, approximately a, is increased, the circulating motion of 
vu - w", a3 becomes increasingly important compared to other contributions of the 
flow field. 

A fourth particular solution that can be useful in certain cases is given by 

ps = 
2 a2 

vS=-3Km3 ( " ' +x), (A 17a,6) 
60a5 6a3 20a 

- - - (E/'I6 + - (E/a)4 - 631 
- 
40950 ' ( 5040 180 40 

(A 17c) 

where K is an arbitrary constant. This is also an azimuthally independent flow where 
the radial flow over the vertical boundaries has a dipole character with inflow in the 
lower half and outflow in the upper half of the channel. The azimuthal flow is similar 
to that of the third particular solution but is here in opposite directions in the upper 
and lower halves of the channel. There is no net vertical transport of fluid across the 
horizontal boundaries from this solution. 

Formal solutions for < and P2 with arbitrary U ,  and W, have been obtained and 
will be presented elsewhere. In  cases for which U ,  and W, are independent of the 
azimuthal coordinate, s, it  follows directly from (A 1) and (A 2-A 4) that Pl, and the 
corresponding velocity components also are independent of s. However, the solution 
for P2 depends on s even if the source term of the non-homogeneous boundary 
condition (A 6c) does not. For the radial velocity aZ, though, we get from ( 3 . 1 7 ~ )  and 
(A lo), after some analysis, the generally valid formula 

OD 

= aR+gfo(s)+~~(E)go(s)+ C [ x ~ ( E ) f m ( ~ ) + x ~ ( E ) ~ r n ( s ) I z m ( z ) ,  (A 18) 
m-1 

where f,(s) and gm(s) are defined by 

and where 
W ( s , z )  = t(U++U-)-g[al([ = a)+al(E = -a)]-aR, 

P ( s , z )  =t (U++U-) -g [a1(5=  a ) - a l ( l = - a ) ] .  

Therefore, if U ,  and W, are independent of s and consequently alsof, and g m ,  (A 18) 
implies that a2 is indeed independent of the azimuthal coordinate too. 
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Another interesting quantity is the part of the net radial flow across 6 = 0 that 
takes place in the boundary layers a t  the meridional barriers. By direct calculation 
one obtains for the net azimuthal flow, &,,I, into the inner half of the respective 
barrier layers : 

which must equal the boundary-layer contributions of the net radial flux across 
= 0. The first term in (A 19) is due to the third particular solution and has opposite 

sign in the two layers. Therefore this flow does not contribute to the global net flux 
in the radial direction. The remaining part is solely due to the series solution part of 
PI; when, for all n, a, (s = R e )  = a,(s = -RO) = 0 there is no net flux in either of the 
barrier layers from this part. If a,(s = RO) = a,(s = - R e )  there is no global net flux 
through the barrier layers. For all the cases presented in $3.3 the latter statement at 
least is true. 
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